Status of the High Current Proton Accelerator for the TRASCO Program

Paolo Pierini

INFN Milano - LASA

on behalf of the TRASCO_ACC group

TRASCO ACC

D. Barnia, G. Bellomoa, G. Bisoffib, A. Bosottia, L. Celonac, A. Chincarinid, G. Ciavolac, M. Comunianb, A. Faccob, S. Gamminoc, G. Gemmed, G. Lamannae,

A. Lombardi^b, P. Michelato^a, M. Napolitano^f, C. Pagani^a, A. Palmieri^b, R. Parodi^d,

P. Pierinia, A. Pisentb, F. Scarpab, D. Sertorea, V. Zviagintsevb,

aINFN Milano LASA

bINFN-LNL

cINFN-LNS

dINFN Genova

eINFN Bari

fUniversity and INFN, Napoli

http://wwwlasa.infn.it

http://www.lnl.infn.it

http://www.lns.infn.it

http://www.ge.infn.it

http://www.ba.infn.it

http://www.na.infn.it

The TRASCO Program

TRASCO: conceptual study and the prototyping of components for an accelerator driven system for nuclear waste transmutation, and involves research agencies and Italian companies

- TRASCO/ACC
 - · Accelerator studies: lead by INFN
- TRASCO/SS
 - Subcritical reactor studies: lead by ENEA

TRASCO/ACC (1998-2004, in three funding stages) is devoted to:

- Conceptual design of a high current superconducting proton linac
 - I=30 mA, E = 1 GeV
- Construction and R&D activities on key items:
 - an 80 kV, 35 mA proton source (INFN LNS)
 - · a 5 MeV, 30 mA, CW RFQ (INFN LNL)
 - SC cavity prototypes for low β cavities (<100 MeV) (INFN LNL)
 - SC cavity prototypes for β = 0.47 elliptical cavities (INFN MI)
 - SC cavity prototypes for β = 0.85 sputtered cavities (INFN GE)
 - engineering of elliptical SC linac components (cryomodules, etc.) (INFN MI)

The Reference Linac Design

80 keV 5 MeV ~100 MeV 200 MeV 500 MeV >1000 MeV

Source	RFQ	IS <i>C</i> L	High Energy SC Linac
Microwave RF Source High current (35 mA) 80 keV	High transmission 95% 30 mA, 5 MeV (352 MHz)	5 - $85/100$ MeV SC linac Baseline design: Reentrant cavities (352 MHz) Alternative design: Spoke, $\lambda/2$, $\lambda/4$, ladder $8\beta\lambda$ FODO focussing with sc magnets	3 section linac: - 85/100 - 200 MeV, β =0.47 - 200 - 500 MeV, β =0.65 - 500 - 1000/2000 MeV, β =0.85 Five(six) cell elliptical cavities Quadrupole doublet focussing: multi-cavity cryostats between doublets - 704.4 MHz

TRIPS: TRASCO Intense Proton Source

High intensity (tens mA) proton sources exist, but ADS asks for high reliability and availability

Additional efforts are required for:

- Voltage and current stability
- Control of the low beam emittance

Design in 1999, source in LNS in May 2000 Achievements:

- First beam of 20 mA @ 60 kV in Jan 2001
- 80 kV, 55 mA operation in Aug 2001

Off-resonance microwave discharge source (2.45 GHz), based on SILHI (CEA/Saclay)

- Pentode configuration with new geometry

- Lowered voltage: from 95 kV to 80 kV

TRIPS G	Achieved	
Proton Beam current	35 mA (~90% p.f.)	
Beam emittance	$0.2~\pi$ mm mrad	To be measured
Operating voltage	80 kV	80 kV

TRIPS recent performances

A rms emittance below 0.2 π mm mrad has been calculated with beam dynamics simulations, crosschecking different codes

- Emittance unit from CEA is being shipped to Catania for measurements

LEBT for beam analysis and characterization:

- Solenoid (focussing)
- Beam alignment monitor
- 2 current transformers for beam current measurements
- 10 kW beam stop

Reliability tests have been performed:

- at 65 kV/15 mA: 24 h with no beam interruptions
- Tests at 80 kV are underway (improving)

A new control system for automatic restart procedures after discharge is being implemented

Low Energy Linac

Laboratori Nazionali di Legnaro

The low energy linac is split in two components:

A normal conducting CW Radio Frequency Quadrupole (RFQ): from 80 keV
 to 5 MeV

RFQ design: 3 resonantly coupled segments. Modulation:

- Radial match in the structure
- Shaper
- Gentle buncher (from dc to 352.2 MHz bunches)
- Accelerator (boosts up to 5 MeV, longest portion)

- A superconducting linac (ISCL): from 5 MeV to 100 MeV
 - Reentrant cavities for highest availability (allowing beam on with 1 cavity off)
 - $\lambda/4$, $\lambda/2$ cavities
 - Spoke cavities

RFQ Design and Fabrication tests

Different optimization procedure for TRASCO RFQ w.r.t. LEDA

- Limit to 1 RF source (1.3 MW CERN-LEP klystron)
- Lower current of 30 mA (96 % transmission)
- Peak surface electric field is 33 MV/m, (1.8 Kp)
- Simplified engineering/manufacturing choices

Substantial heat dissipation in the structure ~ 600 kW total

Three resonantly coupled segments

A 3 m Al model of the structure has been built and measured at LNL, and achieved the necessary field stabilization

A 220 mm part of the structure has been built to test the full fabrication procedures

- Brazing
- Water channels by long (1 m) drilling

Full structure is under fabrication

TRASCO RFQ:				
Beam current	30 mA (96 % transmission)			
Beam emittance	$0.2~\pi$ mm mrad T			
Beam emirrance	$0.18~\pi$ deg MeV L			
Final Energy	5 MeV			
Length	7.13 m (3 sections)			
RF Power	150 kW (beam)			
RI FOWEI	600 kW (structure)			
Peak Field	1.8 Kilpatrick			

Superconducting low energy linac

Single or two-gap structure linac

- Moderate energy gain/cavity
- Solid state RF amplifiers
- $8 \beta \lambda$ focussing lattice

Various options, are being considered

- Reentrant cavities

- Spoke cavities

- $\lambda/4$ cavities

- Ladder (see G. Bisoffi)

Quarter Wave resonator (QWR) 2 gap structure of the ALPI linac in INFN-LNL

4βλ

2 gap spoke cavity

See A. Facco talk (13:40 October 8)

Reentrant cavity single gap structure.

He Vessel integrated in the cavity

Spoke Workshop, LANL, 7-8 October 2002

The high energy linac

INFN Milano LASA

Conceptual design of the 3 section linac Development and test of prototype cavities

- At 352 MHz with the LEP II sputtering technology
- At 704 MHz, bulk niobium, for the lowest β

Design and engineering of cavity components and ancillaries

- Cryomodule, tuner system, piezo damping, ...

RF Test infrastructure

Section β	0.47	0.65	0.85
# cells/cavity	5	5	6
Length	50 m	93 m	102 m
Tuitial/Einel Engage	100 MeV	190 MeV	480 MeV
Initial/Final Energy	190 MeV	480 MeV	1 GeV
Doublet period	4.2 m	5.8 m	8.5 m
# periods	12	16	12
# cavities in section	24	48	48
Max. Eacc (MV/m)	8.5 MV/m	10.2 MV/m	12.3 MV/m

Conceptual design: cavity & linac design

Build linac from simple rules, with control of longitudinal & transverse phase advances

- Parametric tool for the analysis of the cavity shape on the electromagnetic (and mechanical) parameters
- Inner cell tuning is performed through the diameter, all the characteristic cell parameters stay constant: R, r, α , d, L, Riris
- End cell tuning is performed through the wall angle inclination, α , or distance, d. R, L and Riris are set independently
- End groups for a 4 die cavity tuned using the end cell diameter (and α ,d,R,L, Riris are indep. set)

NFN Milano LASA

352 MHz β =0.85 prototypes with CERN

INFN Milano LASA/Genova

352 MHz cavities with CERN (MOU)

- Use LEP II sputtering technology
- Single cell and 5 cell sputtered β = 0.85
- Cavity integrated in a LEP type cryostat

All tests reached the design goals, indeed performed as the best LEP batch But: Bulk niobium is needed at lower β , and the gradient is moderate w.r.t 704 MHz

Test in a modified LEPII cryomodule (Aug. 2001)

- Powered to 250 kW
- 7 MV/m

P. Pierini

Spoke Workshop, LANL, 7-8 October 2002

β =0.47 single cell cavities prototypes

INFN Milano LASA

Fabricated with RRR>30 & RRR>250 Niobium at Zanon BCP, HPR and tests at TJNAF (Z104) and Saclay (Z101-Z103)

For 1-cell:

 $E_p/E_{acc} = 2.90$

 $B_p^r/E_{acc} = 5.38 \text{ mT/(MV/m)}$

For 5-cell:

 $E_p/E_{acc} = 3.57$

 $B_p/E_{acc} = 5.88 \text{ mT/(MV/m)}$

Two 5 cell cavities are under fabrication at ZANON

 $B_p [mT], E_p [MV/m], E_{acc} [MV/m]$

Spoke Workshop, LANL, 7-8 October 2002

Baseline of the "smooth" linac design

Full SC linac from 5 MeV to 1 GeV

Rms emittances growth (from end of RFQ to full energy) < 2%

Perspectives

The effort to build a complete ADS system exceeds the capabilities (and the funding availability) of any national program like TRASCO

- TRASCO means to provide significant R&D and prototipical effort along the road to the design of a transmuter system
- cfr. "A European Roadmap for Developing Accelerator Driven Systems (ADS) for Nuclear Waste Incineration", by the European Technical Working Group on ADS, April 2001 (available in http://itumagill.fzk.de/ADS/)

Already in the 5th Framework Program of the European Commission a Program has been funded: "PDS-XADS - Preliminary Design Studies for an experimental Accelerator Driven System"

- 25 Partners, from Research Institutions to EU Industries
- 12 M€ Program (50% supported by the Commission)
- Several Working Packages, dealing with various aspects of an ADS
- WP3 is dedicated to the Accelerator

More to come in the 6th Framework Program about to start ...